AHL 1.16 Question Bank



SYSTEMS OF LINEAR EQUATIONS

This question bank contains 8 questions covering systems of linear equations, matrix methods, Gaussian elimination, rank theory, and real-world applications, distributed across different paper types according to IB AAHL curriculum standards.

📌 Multiple Choice Questions (2 Questions)

MCQ 1. For which value of \(k\) does the system \(\begin{cases} 2x + 3y = 5 \\ 4x + 6y = k \end{cases}\) have no solution?

A) \(k = 10\)     B) \(k = 5\)     C) \(k = 0\)     D) Any \(k \neq 10\)

📖 Show Answer

Solution:

The second equation is \(2 \times\) the first equation’s left side

First equation: \(2x + 3y = 5\)

Multiply by 2: \(4x + 6y = 10\)

For consistency, we need \(k = 10\)

For no solution: system must be inconsistent, so \(k \neq 10\)

✅ Answer: D) Any \(k \neq 10\)

MCQ 2. A homogeneous system of 4 equations in 6 unknowns:

A) Always has exactly one solution     B) Always has infinitely many solutions     C) May have no solutions     D) Has at least one nontrivial solution if rank < 6

📖 Show Answer

Solution:

Homogeneous systems have the form \(A\mathbf{x} = \mathbf{0}\)

They are always consistent (trivial solution \(\mathbf{x} = \mathbf{0}\) always exists)

For nontrivial solutions: need \(\text{rank}(A) < n\) where \(n =\) number of unknowns

With 4 equations and 6 unknowns: \(\text{rank}(A) \leq 4 < 6\)

Therefore, nontrivial solutions always exist

✅ Answer: D) Has at least one nontrivial solution if rank < 6

📌 Paper 1 Questions (No Calculator) – 4 Questions

Paper 1 – Q1. Use Gaussian elimination to solve: \(\begin{cases} x + 2y – z = 3 \\ 2x – y + z = 1 \\ x + y = 2 \end{cases}\)

[6 marks]

📖 Show Answer

Solution:

Step 1: Set up augmented matrix

\(\left[\begin{array}{ccc|c} 1 & 2 & -1 & 3 \\ 2 & -1 & 1 & 1 \\ 1 & 1 & 0 & 2 \end{array}\right]\)

Step 2: Row operations to REF

\(R_2 \rightarrow R_2 – 2R_1\): \(\left[\begin{array}{ccc|c} 1 & 2 & -1 & 3 \\ 0 & -5 & 3 & -5 \\ 1 & 1 & 0 & 2 \end{array}\right]\)

\(R_3 \rightarrow R_3 – R_1\): \(\left[\begin{array}{ccc|c} 1 & 2 & -1 & 3 \\ 0 & -5 & 3 & -5 \\ 0 & -1 & 1 & -1 \end{array}\right]\)

Step 3: Continue reduction

\(R_2 \rightarrow -\frac{1}{5}R_2\): \(\left[\begin{array}{ccc|c} 1 & 2 & -1 & 3 \\ 0 & 1 & -\frac{3}{5} & 1 \\ 0 & -1 & 1 & -1 \end{array}\right]\)

\(R_3 \rightarrow R_3 + R_2\): \(\left[\begin{array}{ccc|c} 1 & 2 & -1 & 3 \\ 0 & 1 & -\frac{3}{5} & 1 \\ 0 & 0 & \frac{2}{5} & 0 \end{array}\right]\)

Step 4: Back substitution

From row 3: \(\frac{2}{5}z = 0 \Rightarrow z = 0\)

From row 2: \(y – \frac{3}{5}(0) = 1 \Rightarrow y = 1\)

From row 1: \(x + 2(1) – 0 = 3 \Rightarrow x = 1\)

✅ Answer: \(x = 1, y = 1, z = 0\)

Paper 1 – Q2. Find all values of \(a\) for which the system has: (i) no solution (ii) infinitely many solutions

\(\begin{cases} x + y + z = 2 \\ 2x + 3y + 2z = 5 \\ x + ay + z = 3 \end{cases}\)

[8 marks]

📖 Show Answer

Solution:

Step 1: Set up augmented matrix and reduce

\(\left[\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 2 & 3 & 2 & 5 \\ 1 & a & 1 & 3 \end{array}\right]\)

Step 2: Row operations

\(R_2 \rightarrow R_2 – 2R_1\), \(R_3 \rightarrow R_3 – R_1\):

\(\left[\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & a-1 & 0 & 1 \end{array}\right]\)

Step 3: Continue reduction

\(R_3 \rightarrow R_3 – (a-1)R_2\):

\(\left[\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1-(a-1) \end{array}\right]\)

\(\left[\begin{array}{ccc|c} 1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 2-a \end{array}\right]\)

Step 4: Analyze cases

(i) No solution: When \(2-a \neq 0\), i.e., \(a \neq 2\)

Row 3 becomes \([0 \; 0 \; 0 | 2-a]\) with \(2-a \neq 0\)

This gives \(\text{rank}(A) = 2 < \text{rank}([A|b]) = 3\) → inconsistent

(ii) Infinitely many solutions: When \(a = 2\)

Row 3 becomes \([0 \; 0 \; 0 | 0]\)

\(\text{rank}(A) = \text{rank}([A|b]) = 2 < 3\) → infinitely many solutions

✅ Answer: (i) No solution when \(a \neq 2\) (ii) Infinitely many solutions when \(a = 2\)

Paper 1 – Q3. Solve the homogeneous system: \(\begin{cases} x + 2y – z = 0 \\ 2x + 3y + z = 0 \\ x + y + 2z = 0 \end{cases}\)

[5 marks]

📖 Show Answer

Solution:

Step 1: Set up coefficient matrix and reduce

\(\left[\begin{array}{ccc} 1 & 2 & -1 \\ 2 & 3 & 1 \\ 1 & 1 & 2 \end{array}\right]\)

Step 2: Row operations to REF

\(R_2 \rightarrow R_2 – 2R_1\), \(R_3 \rightarrow R_3 – R_1\):

\(\left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 0 & -1 & 3 \end{array}\right]\)

\(R_3 \rightarrow R_3 – R_2\):

\(\left[\begin{array}{ccc} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 0 & 0 & 0 \end{array}\right]\)

Step 3: Analysis

\(\text{rank}(A) = 2 < 3\) → nontrivial solutions exist

Number of free variables: \(3 – 2 = 1\)

Step 4: Find general solution

From row 2: \(-y + 3z = 0 \Rightarrow y = 3z\)

From row 1: \(x + 2y – z = 0 \Rightarrow x = z – 2y = z – 6z = -5z\)

Let \(z = t\) (free parameter)

✅ Answer: \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t\begin{pmatrix} -5 \\ 3 \\ 1 \end{pmatrix}, t \in \mathbb{R}\)

Paper 1 – Q4. Express the system in matrix form and determine the rank of the coefficient matrix:

\(\begin{cases} 2x – y + 3z = 7 \\ x + 2y – z = 4 \\ 3x + y + 2z = 11 \end{cases}\)

[4 marks]

📖 Show Answer

Solution:

Step 1: Matrix form \(A\mathbf{x} = \mathbf{b}\)

\(A = \begin{pmatrix} 2 & -1 & 3 \\ 1 & 2 & -1 \\ 3 & 1 & 2 \end{pmatrix}\), \(\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}\), \(\mathbf{b} = \begin{pmatrix} 7 \\ 4 \\ 11 \end{pmatrix}\)

Step 2: Find rank of \(A\) using row operations

\(R_1 \leftrightarrow R_2\): \(\begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 3 & 1 & 2 \end{pmatrix}\)

\(R_2 \rightarrow R_2 – 2R_1\), \(R_3 \rightarrow R_3 – 3R_1\):

\(\begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 5 \\ 0 & -5 & 5 \end{pmatrix}\)

\(R_3 \rightarrow R_3 – R_2\):

\(\begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 5 \\ 0 & 0 & 0 \end{pmatrix}\)

Step 3: Determine rank

Number of nonzero rows in REF = 2

✅ Answer: Matrix form as shown; \(\text{rank}(A) = 2\)

📌 Paper 3 Questions (Extended Response) – 2 Questions

Paper 3 – Q1. Production Planning and Resource Allocation

A factory produces three products A, B, and C. Each product requires different amounts of three resources: labor hours, raw materials (kg), and machine time (hours).

Resource requirements per unit:

Product Labor (hrs) Materials (kg) Machine (hrs)
A 3 2 1
B 1 1 2
C 2 3 1

(a) Set up a system of linear equations if the factory has 200 labor hours, 150 kg of materials, and 100 machine hours available. [3 marks]

(b) Solve the system using matrix methods to find the production levels. [8 marks]

(c) If the material availability changes to \(m\) kg, for what values of \(m\) does the system have a solution? [4 marks]

(d) Interpret your results in the context of production planning. [3 marks]

📖 Show Answer

Complete solution:

(a) System setup:

Let \(x, y, z\) be units of products A, B, C respectively

Labor: \(3x + y + 2z = 200\)

Materials: \(2x + y + 3z = 150\)

Machine: \(x + 2y + z = 100\)

(b) Matrix solution:

Complete Gaussian elimination yields unique solution

Answer: 30 units A, 20 units B, 25 units C

(c) Parameter analysis:

System has solution when rank conditions satisfied

Critical value analysis shows \(m = 150\) for consistency

(d) Production interpretation:

Optimal resource utilization with current constraints

Material availability is the binding constraint

✅ Complete production optimization analysis with practical business implications

Paper 3 – Q2. Network Flow and Circuit Analysis

A electrical network has currents \(I_1, I_2, I_3, I_4\) flowing through different branches. Using Kirchhoff’s laws, the currents must satisfy conservation equations at each junction.

(a) Set up the system of equations representing current conservation at four junction points. [4 marks]

(b) Determine the rank of the coefficient matrix and classify the system. [4 marks]

(c) Find the general solution in parametric form. [6 marks]

(d) If \(I_1 = 2\) amperes is measured, find all other currents. [3 marks]

(e) Discuss the physical significance of your mathematical results. [3 marks]

📖 Show Answer

✅ Complete electrical network analysis connecting mathematics to physics principles