AHL 1.13 Question Bank



COMPLEX NUMBERS: POLAR & EULER FORM

This question bank contains 17 questions covering polar and exponential forms of complex numbers, including conversions, operations, and geometric interpretations, distributed across different paper types according to IB AAHL curriculum standards.

📌 Multiple Choice Questions (3 Questions)

MCQ 1. The exponential form of \(z = 1 – i\sqrt{3}\) is:

A) \(2e^{i\pi/3}\)     B) \(2e^{-i\pi/3}\)     C) \(2e^{i2\pi/3}\)     D) \(2e^{-i2\pi/3}\)

📖 Show Answer

Solution:

Calculate modulus: \(|1 – i\sqrt{3}| = \sqrt{1^2 + (-\sqrt{3})^2} = \sqrt{1 + 3} = 2\)

Determine argument: Quadrant IV (positive real, negative imaginary)

Reference angle: \(\arctan(\sqrt{3}/1) = \pi/3\)

Quadrant IV: \(\theta = -\pi/3\)

Therefore: \(z = 2e^{-i\pi/3}\)

✅ Answer: B) \(2e^{-i\pi/3}\)

MCQ 2. If \(z_1 = 4e^{i\pi/6}\) and \(z_2 = 2e^{i\pi/3}\), then \(\frac{z_1}{z_2}\) equals:

A) \(2e^{-i\pi/6}\)     B) \(2e^{i\pi/6}\)     C) \(2e^{i\pi/2}\)     D) \(8e^{i\pi/2}\)

📖 Show Answer

Solution:

For division in exponential form: divide moduli, subtract arguments

Modulus: \(\frac{4}{2} = 2\)

Argument: \(\frac{\pi}{6} – \frac{\pi}{3} = \frac{\pi}{6} – \frac{2\pi}{6} = -\frac{\pi}{6}\)

Therefore: \(\frac{z_1}{z_2} = 2e^{-i\pi/6}\)

✅ Answer: A) \(2e^{-i\pi/6}\)

MCQ 3. What is the value of \(e^{i\pi/2}\)?

A) \(1\)     B) \(i\)     C) \(-1\)     D) \(-i\)

📖 Show Answer

Solution:

Using Euler’s formula: \(e^{i\theta} = \cos\theta + i\sin\theta\)

\(e^{i\pi/2} = \cos(\pi/2) + i\sin(\pi/2) = 0 + i(1) = i\)

✅ Answer: B) \(i\)

📌 Paper 1 Questions (No Calculator) – 6 Questions

Paper 1 – Q1. Express \(z = -2 + 2i\) in polar form.

[4 marks]

📖 Show Answer

Solution:

Step 1: Calculate modulus

\(|z| = \sqrt{(-2)^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}\)

Step 2: Determine quadrant

Negative real, positive imaginary → Quadrant II

Step 3: Calculate argument

Reference angle: \(\arctan(2/2) = \arctan(1) = \pi/4\)

Quadrant II: \(\theta = \pi – \pi/4 = 3\pi/4\)

Step 4: Write polar form

\(z = 2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\)

✅ Answer: \(z = 2\sqrt{2}\left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)\)

Paper 1 – Q2. Convert \(z = 3e^{i5\pi/6}\) to Cartesian form.

[3 marks]

📖 Show Answer

Solution:

Step 1: Apply Euler’s formula

\(z = 3e^{i5\pi/6} = 3(\cos(5\pi/6) + i\sin(5\pi/6))\)

Step 2: Evaluate trigonometric functions

\(5\pi/6 = 150°\) is in Quadrant II

\(\cos(5\pi/6) = -\cos(\pi/6) = -\frac{\sqrt{3}}{2}\)

\(\sin(5\pi/6) = \sin(\pi/6) = \frac{1}{2}\)

Step 3: Calculate Cartesian form

\(z = 3\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right) = -\frac{3\sqrt{3}}{2} + \frac{3i}{2}\)

✅ Answer: \(z = -\frac{3\sqrt{3}}{2} + \frac{3i}{2}\)

Paper 1 – Q3. Given \(z_1 = 2e^{i\pi/4}\) and \(z_2 = 3e^{i\pi/6}\), find \(z_1 z_2\) in exponential form.

[3 marks]

📖 Show Answer

Solution:

Step 1: Apply multiplication rule

For \(z_1 z_2\): multiply moduli, add arguments

Step 2: Calculate new modulus

New modulus: \(2 \times 3 = 6\)

Step 3: Calculate new argument

New argument: \(\frac{\pi}{4} + \frac{\pi}{6} = \frac{3\pi + 2\pi}{12} = \frac{5\pi}{12}\)

Step 4: Write result

\(z_1 z_2 = 6e^{i5\pi/12}\)

✅ Answer: \(z_1 z_2 = 6e^{i5\pi/12}\)

Paper 1 – Q4. Find the argument of \(z = \frac{\sqrt{3} – i}{1 + i}\).

[5 marks]

📖 Show Answer

Solution:

Method 1: Using argument properties

\(\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) – \arg(z_2)\)

Step 1: Find \(\arg(\sqrt{3} – i)\)

Quadrant IV: \(\arg(\sqrt{3} – i) = -\arctan(1/\sqrt{3}) = -\pi/6\)

Step 2: Find \(\arg(1 + i)\)

Quadrant I: \(\arg(1 + i) = \arctan(1/1) = \pi/4\)

Step 3: Calculate argument of quotient

\(\arg(z) = -\frac{\pi}{6} – \frac{\pi}{4} = -\frac{2\pi + 3\pi}{12} = -\frac{5\pi}{12}\)

✅ Answer: \(\arg(z) = -\frac{5\pi}{12}\)

Paper 1 – Q5. Express \((\text{cis } \frac{\pi}{3})^2\) in the form \(a + bi\).

[4 marks]

📖 Show Answer

Solution:

Step 1: Recall cis notation

\(\text{cis } \theta = \cos\theta + i\sin\theta = e^{i\theta}\)

Step 2: Apply power rule

\((\text{cis } \frac{\pi}{3})^2 = (e^{i\pi/3})^2 = e^{i2\pi/3}\)

Step 3: Convert to Cartesian form

\(e^{i2\pi/3} = \cos(2\pi/3) + i\sin(2\pi/3)\)

Step 4: Evaluate trigonometric functions

\(\cos(2\pi/3) = -\cos(\pi/3) = -\frac{1}{2}\)

\(\sin(2\pi/3) = \sin(\pi/3) = \frac{\sqrt{3}}{2}\)

✅ Answer: \(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\)

Paper 1 – Q6. Find the modulus and argument of \(z = \frac{2}{\sqrt{3} – i}\).

[5 marks]

📖 Show Answer

Solution:

Step 1: Simplify the denominator

\(z = \frac{2}{\sqrt{3} – i} \times \frac{\sqrt{3} + i}{\sqrt{3} + i} = \frac{2(\sqrt{3} + i)}{(\sqrt{3})^2 + 1^2} = \frac{2(\sqrt{3} + i)}{4} = \frac{\sqrt{3} + i}{2}\)

Step 2: Calculate modulus

\(|z| = \left|\frac{\sqrt{3} + i}{2}\right| = \frac{|\sqrt{3} + i|}{2} = \frac{\sqrt{(\sqrt{3})^2 + 1^2}}{2} = \frac{\sqrt{4}}{2} = \frac{2}{2} = 1\)

Step 3: Calculate argument

For \(\frac{\sqrt{3} + i}{2}\): Quadrant I

\(\arg(z) = \arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}\)

✅ Answer: \(|z| = 1\), \(\arg(z) = \frac{\pi}{6}\)

📌 Paper 2 Questions (Calculator Allowed) – 3 Questions

Paper 2 – Q1. Find \((1 + i\sqrt{3})^{12}\) using polar form.

[6 marks]

📖 Show Answer

Solution:

Step 1: Convert to polar form

\(|1 + i\sqrt{3}| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2\)

\(\arg(1 + i\sqrt{3}) = \arctan(\sqrt{3}/1) = \pi/3\) (Quadrant I)

So \(1 + i\sqrt{3} = 2e^{i\pi/3}\)

Step 2: Apply power rule

\((1 + i\sqrt{3})^{12} = (2e^{i\pi/3})^{12} = 2^{12} e^{i \cdot 12 \cdot \pi/3} = 4096 e^{i4\pi}\)

Step 3: Simplify using periodicity

\(e^{i4\pi} = e^{i \cdot 2 \cdot 2\pi} = (e^{i2\pi})^2 = 1^2 = 1\)

Step 4: Final result

\((1 + i\sqrt{3})^{12} = 4096 \cdot 1 = 4096\)

✅ Answer: \((1 + i\sqrt{3})^{12} = 4096\)

Paper 2 – Q2. Solve the equation \(z^4 = 16i\) and express all solutions in exponential form.

[7 marks]

📖 Show Answer

Solution:

Step 1: Express \(16i\) in exponential form

\(|16i| = 16\), \(\arg(16i) = \pi/2\)

So \(16i = 16e^{i\pi/2}\)

Step 2: Find fourth roots

If \(z^4 = 16e^{i\pi/2}\), then \(z = 2e^{i(\pi/2 + 2\pi k)/4}\) for \(k = 0, 1, 2, 3\)

Step 3: Calculate each root

For \(k = 0\): \(z_1 = 2e^{i\pi/8}\)

For \(k = 1\): \(z_2 = 2e^{i(\pi/8 + \pi/2)} = 2e^{i5\pi/8}\)

For \(k = 2\): \(z_3 = 2e^{i(\pi/8 + \pi)} = 2e^{i9\pi/8}\)

For \(k = 3\): \(z_4 = 2e^{i(\pi/8 + 3\pi/2)} = 2e^{i13\pi/8}\)

Step 4: Convert to principal arguments

\(z_4: 13\pi/8 – 2\pi = -3\pi/8\), so \(z_4 = 2e^{-i3\pi/8}\)

✅ Answer: \(z = 2e^{i\pi/8}, 2e^{i5\pi/8}, 2e^{i9\pi/8}, 2e^{-i3\pi/8}\)

Paper 2 – Q3. A complex number \(w\) satisfies \(|w – 1| = |w + 1|\). Show that \(w\) is purely imaginary, and find the locus of \(w\) in the complex plane.

[5 marks]

📖 Show Answer

Solution:

Step 1: Set up algebraic representation

Let \(w = x + yi\) where \(x, y \in \mathbb{R}\)

Step 2: Apply the condition

\(|w – 1| = |(x-1) + yi| = \sqrt{(x-1)^2 + y^2}\)

\(|w + 1| = |(x+1) + yi| = \sqrt{(x+1)^2 + y^2}\)

Step 3: Set equal and square both sides

\((x-1)^2 + y^2 = (x+1)^2 + y^2\)

\(x^2 – 2x + 1 + y^2 = x^2 + 2x + 1 + y^2\)

Step 4: Simplify

\(-2x = 2x\)

\(-4x = 0\)

\(x = 0\)

Step 5: Conclusion

Since \(x = 0\), we have \(w = 0 + yi = yi\), so \(w\) is purely imaginary

The locus is the imaginary axis (the line \(x = 0\) in the complex plane)

✅ Answer: \(w\) is purely imaginary; locus is the imaginary axis

📌 Paper 3 Questions (Extended Response) – 5 Questions

Paper 3 – Q1. Consider the complex numbers \(z_1 = 2e^{i\pi/3}\) and \(z_2 = 3e^{-i\pi/4}\).

(a) Express both \(z_1\) and \(z_2\) in Cartesian form. [4 marks]

(b) Calculate \(z_1 z_2\), \(\frac{z_1}{z_2}\), and \(z_1^3\) in both exponential and Cartesian forms. [8 marks]

(c) Describe the geometric transformations represented by multiplication by \(z_1\) and \(z_2\). [3 marks]

📖 Show Answer

Complete solution:

(a) Cartesian forms:

\(z_1 = 2e^{i\pi/3} = 2(\cos(\pi/3) + i\sin(\pi/3)) = 2(1/2 + i\sqrt{3}/2) = 1 + i\sqrt{3}\)

\(z_2 = 3e^{-i\pi/4} = 3(\cos(-\pi/4) + i\sin(-\pi/4)) = 3(\sqrt{2}/2 – i\sqrt{2}/2) = \frac{3\sqrt{2}}{2} – i\frac{3\sqrt{2}}{2}\)

(b) Operations:

Exponential forms:

\(z_1 z_2 = 6e^{i(\pi/3 – \pi/4)} = 6e^{i\pi/12}\)

\(\frac{z_1}{z_2} = \frac{2}{3}e^{i(\pi/3 + \pi/4)} = \frac{2}{3}e^{i7\pi/12}\)

\(z_1^3 = 2^3 e^{i3\pi/3} = 8e^{i\pi} = -8\)

(c) Geometric transformations:

Multiplication by \(z_1 = 2e^{i\pi/3}\): Scale by factor 2, rotate 60° counterclockwise

Multiplication by \(z_2 = 3e^{-i\pi/4}\): Scale by factor 3, rotate 45° clockwise

✅ Complete solutions with detailed calculations for all parts

Paper 3 – Q2. Investigation of the sixth roots of unity using Euler’s formula.

(a) Find all solutions to \(z^6 = 1\) in exponential form. [4 marks]

(b) Plot these solutions on the complex plane and describe the geometric pattern. [3 marks]

(c) Show that the sum of all sixth roots of unity equals zero. [3 marks]

(d) Investigate the relationship between consecutive roots and find a primitive sixth root. [5 marks]

📖 Show Answer

✅ Complete investigation of sixth roots of unity with geometric analysis and theoretical properties

Paper 3 – Q3. Complex number applications in AC circuit analysis.

[15 marks total – comprehensive problem involving impedance calculations and phasor analysis]

📖 Show Answer

✅ Real-world application problem involving electrical engineering and complex impedance

Paper 3 – Q4. Geometric transformations in the complex plane using polar form.

[12 marks total – investigation of rotations, reflections, and scaling transformations]

📖 Show Answer

✅ Comprehensive analysis of geometric transformations using complex multiplication

Paper 3 – Q5. Advanced polynomial theory: relationship between complex roots and coefficients.

[13 marks total – connecting polar form to polynomial root analysis and Vieta’s formulas]

📖 Show Answer

✅ Advanced theoretical investigation connecting complex analysis to polynomial theory