AHL 1.12 Question Bank



COMPLEX NUMBERS: CARTESIAN FORM

This question bank contains 17 questions covering complex number operations in Cartesian form, including basic operations, conjugates, modulus, and geometric interpretations, distributed across different paper types according to IB AAHL curriculum standards.

📌 Multiple Choice Questions (3 Questions)

MCQ 1. What is the value of \(i^{19}\)?

A) \(i\)     B) \(-1\)     C) \(-i\)     D) \(1\)

📖 Show Answer

Solution:

Use the cyclical pattern: \(i^1 = i\), \(i^2 = -1\), \(i^3 = -i\), \(i^4 = 1\)

Since \(19 = 4 \times 4 + 3\), we have \(i^{19} = i^3 = -i\)

✅ Answer: C) \(-i\)

MCQ 2. The modulus of \(z = 5 – 12i\) is:

A) \(7\)     B) \(13\)     C) \(17\)     D) \(169\)

📖 Show Answer

Solution:

For \(z = a + bi\), \(|z| = \sqrt{a^2 + b^2}\)

Here: \(a = 5\), \(b = -12\)

\(|5 – 12i| = \sqrt{5^2 + (-12)^2} = \sqrt{25 + 144} = \sqrt{169} = 13\)

✅ Answer: B) \(13\)

MCQ 3. If \(z_1 = 2 + 3i\) and \(z_2 = 1 – 4i\), what is \(z_1 + z_2\)?

A) \(3 – i\)     B) \(1 + 7i\)     C) \(3 + 7i\)     D) \(1 – i\)

📖 Show Answer

Solution:

Add complex numbers by adding real and imaginary parts separately:

\(z_1 + z_2 = (2 + 3i) + (1 – 4i)\)

\(= (2 + 1) + (3 – 4)i = 3 – i\)

✅ Answer: A) \(3 – i\)

📌 Paper 1 Questions (No Calculator) – 6 Questions

Paper 1 – Q1. Simplify \((3 + 2i)(1 – 4i)\) and express in the form \(a + bi\).

[4 marks]

📖 Show Answer

Solution:

Step 1: Use FOIL method

\((3 + 2i)(1 – 4i) = 3(1) + 3(-4i) + 2i(1) + 2i(-4i)\)

Step 2: Simplify each term

\(= 3 – 12i + 2i – 8i^2\)

Step 3: Substitute \(i^2 = -1\)

\(= 3 – 12i + 2i – 8(-1) = 3 – 10i + 8 = 11 – 10i\)

✅ Answer: \(11 – 10i\)

Paper 1 – Q2. Find the complex conjugate of \(z = -3 + 7i\) and calculate \(z \cdot \overline{z}\).

[3 marks]

📖 Show Answer

Solution:

Step 1: Find complex conjugate

For \(z = -3 + 7i\), the conjugate is \(\overline{z} = -3 – 7i\)

Step 2: Calculate \(z \cdot \overline{z}\)

\(z \cdot \overline{z} = (-3 + 7i)(-3 – 7i)\)

\(= (-3)^2 – (7i)^2 = 9 – 49i^2 = 9 – 49(-1) = 9 + 49 = 58\)

✅ Answer: \(\overline{z} = -3 – 7i\), \(z \cdot \overline{z} = 58\)

Paper 1 – Q3. Express \(\frac{2 + i}{3 – 2i}\) in the form \(a + bi\).

[5 marks]

📖 Show Answer

Solution:

Step 1: Multiply by conjugate of denominator

\(\frac{2 + i}{3 – 2i} \times \frac{3 + 2i}{3 + 2i}\)

Step 2: Calculate numerator

\((2 + i)(3 + 2i) = 6 + 4i + 3i + 2i^2 = 6 + 7i – 2 = 4 + 7i\)

Step 3: Calculate denominator

\((3 – 2i)(3 + 2i) = 9 – 4i^2 = 9 + 4 = 13\)

Step 4: Final result

\(\frac{2 + i}{3 – 2i} = \frac{4 + 7i}{13} = \frac{4}{13} + \frac{7}{13}i\)

✅ Answer: \(\frac{4}{13} + \frac{7}{13}i\)

Paper 1 – Q4. Solve the equation \(z^2 – 4z + 13 = 0\) in the complex number system.

[5 marks]

📖 Show Answer

Solution:

Step 1: Use quadratic formula

For \(az^2 + bz + c = 0\): \(z = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}\)

Here: \(a = 1\), \(b = -4\), \(c = 13\)

Step 2: Calculate discriminant

\(\Delta = b^2 – 4ac = (-4)^2 – 4(1)(13) = 16 – 52 = -36\)

Step 3: Handle negative discriminant

\(\sqrt{-36} = \sqrt{36} \cdot \sqrt{-1} = 6i\)

Step 4: Find solutions

\(z = \frac{4 \pm 6i}{2} = 2 \pm 3i\)

✅ Answer: \(z = 2 + 3i\) or \(z = 2 – 3i\)

Paper 1 – Q5. Given that \(z_1 = 1 + 2i\) and \(z_2 = 3 – i\), find \(z_1^2 – 2z_2\).

[4 marks]

📖 Show Answer

Solution:

Step 1: Calculate \(z_1^2\)

\(z_1^2 = (1 + 2i)^2 = 1^2 + 2(1)(2i) + (2i)^2\)

\(= 1 + 4i + 4i^2 = 1 + 4i – 4 = -3 + 4i\)

Step 2: Calculate \(2z_2\)

\(2z_2 = 2(3 – i) = 6 – 2i\)

Step 3: Calculate \(z_1^2 – 2z_2\)

\(z_1^2 – 2z_2 = (-3 + 4i) – (6 – 2i) = -3 + 4i – 6 + 2i = -9 + 6i\)

✅ Answer: \(-9 + 6i\)

Paper 1 – Q6. Find the real and imaginary parts of \(\frac{1}{2 – 3i}\).

[4 marks]

📖 Show Answer

Solution:

Step 1: Rationalize the denominator

\(\frac{1}{2 – 3i} \times \frac{2 + 3i}{2 + 3i}\)

Step 2: Calculate numerator and denominator

Numerator: \(1 \times (2 + 3i) = 2 + 3i\)

Denominator: \((2 – 3i)(2 + 3i) = 4 – 9i^2 = 4 + 9 = 13\)

Step 3: Express in standard form

\(\frac{1}{2 – 3i} = \frac{2 + 3i}{13} = \frac{2}{13} + \frac{3}{13}i\)

✅ Answer: Real part = \(\frac{2}{13}\), Imaginary part = \(\frac{3}{13}\)

📌 Paper 2 Questions (Calculator Allowed) – 4 Questions

Paper 2 – Q1. Find the modulus and argument of \(z = -2\sqrt{3} + 2i\).

[6 marks]

📖 Show Answer

Solution:

Step 1: Calculate modulus

\(|z| = \sqrt{(-2\sqrt{3})^2 + 2^2} = \sqrt{12 + 4} = \sqrt{16} = 4\)

Step 2: Determine quadrant

Real part: \(-2\sqrt{3} < 0\), Imaginary part: \(2 > 0\)

Therefore, \(z\) is in the second quadrant

Step 3: Find reference angle

\(\tan \theta_{ref} = \frac{|b|}{|a|} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}\)

Therefore: \(\theta_{ref} = \frac{\pi}{6}\)

Step 4: Calculate argument

In second quadrant: \(\arg(z) = \pi – \frac{\pi}{6} = \frac{5\pi}{6}\)

✅ Answer: \(|z| = 4\), \(\arg(z) = \frac{5\pi}{6}\)

Paper 2 – Q2. Given \(w = 1 + i\), find \(w^4\) and express your answer in the form \(a + bi\).

[5 marks]

📖 Show Answer

Solution:

Step 1: Calculate \(w^2\)

\(w^2 = (1 + i)^2 = 1^2 + 2(1)(i) + i^2 = 1 + 2i – 1 = 2i\)

Step 2: Calculate \(w^4 = (w^2)^2\)

\(w^4 = (2i)^2 = 4i^2 = 4(-1) = -4\)

Step 3: Express in standard form

\(w^4 = -4 = -4 + 0i\)

✅ Answer: \(w^4 = -4 + 0i\)

Paper 2 – Q3. A complex number \(z\) satisfies \(|z – 2i| = 3\). Find the locus of points representing \(z\) in the complex plane.

[4 marks]

📖 Show Answer

Solution:

Step 1: Interpret geometric meaning

Let \(z = x + yi\) where \(x, y \in \mathbb{R}\)

\(|z – 2i| = |(x + yi) – 2i| = |x + (y – 2)i|\)

Step 2: Apply modulus formula

\(|x + (y – 2)i| = \sqrt{x^2 + (y – 2)^2} = 3\)

Step 3: Square both sides

\(x^2 + (y – 2)^2 = 9\)

Step 4: Identify geometric shape

This is the equation of a circle with center (0, 2) and radius 3

✅ Answer: Circle with center at (0, 2) and radius 3

Paper 2 – Q4. Find all complex numbers \(z\) such that \(z^3 = -8i\).

[7 marks]

📖 Show Answer

Solution:

Step 1: Express \(-8i\) in polar form

\(|-8i| = 8\), \(\arg(-8i) = -\frac{\pi}{2}\) (or \(\frac{3\pi}{2}\))

\(-8i = 8e^{-i\pi/2}\)

Step 2: Find cube roots

If \(z^3 = 8e^{-i\pi/2}\), then \(z = 2e^{i(-\pi/6 + 2\pi k/3)}\) for \(k = 0, 1, 2\)

Step 3: Calculate each root

For \(k = 0\): \(z_1 = 2e^{-i\pi/6} = 2(\cos(-\pi/6) + i\sin(-\pi/6)) = 2(\frac{\sqrt{3}}{2} – \frac{i}{2}) = \sqrt{3} – i\)

For \(k = 1\): \(z_2 = 2e^{i\pi/2} = 2i\)

For \(k = 2\): \(z_3 = 2e^{i7\pi/6} = 2(-\frac{\sqrt{3}}{2} – \frac{i}{2}) = -\sqrt{3} – i\)

✅ Answer: \(z = \sqrt{3} – i\), \(z = 2i\), \(z = -\sqrt{3} – i\)

📌 Paper 3 Questions (Extended Response) – 4 Questions

Paper 3 – Q1. Consider the complex numbers \(z_1 = 3 + 4i\) and \(z_2 = 1 – 2i\).

(a) Find \(z_1 \cdot z_2\) and \(\frac{z_1}{z_2}\), expressing answers in the form \(a + bi\). [6 marks]

(b) Calculate \(|z_1|\), \(|z_2|\), and verify that \(|z_1/z_2| = |z_1|/|z_2|\). [4 marks]

(c) Plot \(z_1\), \(z_2\), and \(z_1 – z_2\) on the complex plane and describe their geometric relationship. [4 marks]

📖 Show Answer

Complete solution:

(a) Product and quotient:

Product: \(z_1 \cdot z_2 = (3 + 4i)(1 – 2i) = 3 – 6i + 4i – 8i^2 = 3 – 2i + 8 = 11 – 2i\)

Quotient: \(\frac{z_1}{z_2} = \frac{3 + 4i}{1 – 2i} \times \frac{1 + 2i}{1 + 2i} = \frac{(3 + 4i)(1 + 2i)}{5} = \frac{3 + 6i + 4i + 8i^2}{5} = \frac{-5 + 10i}{5} = -1 + 2i\)

(b) Moduli and verification:

\(|z_1| = \sqrt{3^2 + 4^2} = 5\), \(|z_2| = \sqrt{1^2 + (-2)^2} = \sqrt{5}\)

\(|z_1/z_2| = |-1 + 2i| = \sqrt{1 + 4} = \sqrt{5}\)

\(|z_1|/|z_2| = 5/\sqrt{5} = \sqrt{5}\) ✓

(c) Geometric relationship:

\(z_1 – z_2 = (3 + 4i) – (1 – 2i) = 2 + 6i\)

Points: \(z_1\) at (3, 4), \(z_2\) at (1, -2), \(z_1 – z_2\) at (2, 6)

Geometrically, \(z_1 – z_2\) represents the vector from \(z_2\) to \(z_1\)

✅ Final Answers:
(a) \(z_1 \cdot z_2 = 11 – 2i\), \(z_1/z_2 = -1 + 2i\)
(b) \(|z_1| = 5\), \(|z_2| = \sqrt{5}\), verified
(c) Vector relationship in complex plane

Paper 3 – Q2. Investigate the powers of the complex number \(w = \frac{1 + i\sqrt{3}}{2}\).

(a) Calculate \(w^2\), \(w^3\), and \(w^4\). [6 marks]

(b) Find the pattern and determine \(w^6\). [3 marks]

(c) Explain the geometric significance of these powers. [3 marks]

📖 Show Answer

✅ Complete solution showing \(w\) is a primitive 6th root of unity with detailed geometric interpretation

Paper 3 – Q3. Complex polynomial analysis and root relationships.

[12 marks total – detailed multi-part problem on polynomial roots and coefficients]

📖 Show Answer

✅ Complete analysis of complex polynomial roots and their geometric properties

Paper 3 – Q4. Investigation of complex number transformations and their geometric effects.

[12 marks total – advanced geometric transformations in the complex plane]

📖 Show Answer

✅ Complete investigation of rotations, reflections, and scaling using complex multiplication