AHL 1.11 Question Bank



PARTIAL FRACTIONS

This question bank contains 11 questions covering partial fraction decomposition techniques, including linear factors, repeated factors, and quadratic factors, distributed across different paper types according to IB AAHL curriculum standards.

๐Ÿ“Œ Multiple Choice Questions (2 Questions)

MCQ 1. The partial fraction decomposition of \(\frac{3x+2}{(x-1)(x+3)}\) is:

A) \(\frac{5/4}{x-1} + \frac{7/4}{x+3}\)     B) \(\frac{7/4}{x-1} + \frac{5/4}{x+3}\)     C) \(\frac{5/4}{x-1} – \frac{7/4}{x+3}\)     D) \(\frac{-1/4}{x-1} + \frac{11/4}{x+3}\)

๐Ÿ“– Show Answer

Solution:

Set up: \(\frac{3x+2}{(x-1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+3}\)

Clear denominators: \(3x+2 = A(x+3) + B(x-1)\)

x = 1: 3(1)+2 = A(4) โ†’ 5 = 4A โ†’ A = 5/4

x = -3: 3(-3)+2 = B(-4) โ†’ -7 = -4B โ†’ B = 7/4

โœ… Answer: A) \(\frac{5/4}{x-1} + \frac{7/4}{x+3}\)

MCQ 2. Which setup is correct for \(\frac{2x^2+x+1}{x(x-1)^2}\)?

A) \(\frac{A}{x} + \frac{B}{(x-1)^2}\)     B) \(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\)     C) \(\frac{Ax+B}{x(x-1)^2}\)     D) \(\frac{A}{x} + \frac{Bx+C}{(x-1)^2}\)

๐Ÿ“– Show Answer

Solution:

For simple linear factor x, we need \(\frac{A}{x}\)

For repeated linear factor (x-1)ยฒ, we need both \(\frac{B}{x-1}\) and \(\frac{C}{(x-1)^2}\)

Complete setup: \(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\)

โœ… Answer: B) \(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\)

๐Ÿ“Œ Paper 1 Questions (No Calculator) – 4 Questions

Paper 1 – Q1. Express \(\frac{5x-7}{x^2-x-2}\) in partial fractions.

[5 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Factor the denominator

\(x^2-x-2 = (x-2)(x+1)\)

Step 2: Set up partial fractions

\(\frac{5x-7}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}\)

Step 3: Clear denominators

\(5x-7 = A(x+1) + B(x-2)\)

Step 4: Find coefficients using cover-up method

x = 2: 5(2)-7 = A(3) โ†’ 3 = 3A โ†’ A = 1

x = -1: 5(-1)-7 = B(-3) โ†’ -12 = -3B โ†’ B = 4

โœ… Answer: \(\frac{1}{x-2} + \frac{4}{x+1}\)

Paper 1 – Q2. Find the partial fraction decomposition of \(\frac{3x+5}{(x+1)^2}\).

[4 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Set up for repeated factor

\(\frac{3x+5}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}\)

Step 2: Clear denominators

\(3x+5 = A(x+1) + B\)

Step 3: Find B using substitution

x = -1: 3(-1)+5 = B โ†’ B = 2

Step 4: Find A by equating coefficients

\(3x+5 = Ax+A+B = Ax+A+2\)

Coefficient of x: 3 = A

โœ… Answer: \(\frac{3}{x+1} + \frac{2}{(x+1)^2}\)

Paper 1 – Q3. Express \(\frac{x+1}{x^2+1}\) in partial fractions.

[3 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Check if xยฒ+1 is irreducible

Discriminant: bยฒ-4ac = 0ยฒ-4(1)(1) = -4 < 0, so irreducible

Step 2: Since xยฒ+1 cannot be factored further

The expression \(\frac{x+1}{x^2+1}\) is already in its simplest partial fraction form

Alternative representation:

\(\frac{x+1}{x^2+1} = \frac{x}{x^2+1} + \frac{1}{x^2+1}\)

โœ… Answer: \(\frac{x+1}{x^2+1}\) (already in simplest form)

Paper 1 – Q4. Decompose \(\frac{2x^2+3x+1}{(x+1)(x^2+1)}\) into partial fractions.

[6 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Set up partial fractions

\(\frac{2x^2+3x+1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}\)

Step 2: Clear denominators

\(2x^2+3x+1 = A(x^2+1) + (Bx+C)(x+1)\)

Step 3: Find A using substitution

x = -1: 2(-1)ยฒ+3(-1)+1 = A(2) โ†’ 0 = 2A โ†’ A = 0

Step 4: Simplify and find B, C

\(2x^2+3x+1 = (Bx+C)(x+1) = Bx^2+Bx+Cx+C\)

Coefficient of xยฒ: 2 = B

Coefficient of x: 3 = B + C = 2 + C โ†’ C = 1

โœ… Answer: \(\frac{2x+1}{x^2+1}\)

๐Ÿ“Œ Paper 2 Questions (Calculator Allowed) – 5 Questions

Paper 2 – Q1. Express \(\frac{x^3+2x^2+3x+2}{x^2+x-2}\) in partial fractions.

[6 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Check if proper fraction

Degree of numerator (3) > degree of denominator (2), so improper

Step 2: Perform polynomial long division

\(\frac{x^3+2x^2+3x+2}{x^2+x-2} = x + 1 + \frac{2x+4}{x^2+x-2}\)

Step 3: Factor denominator of remainder

\(x^2+x-2 = (x+2)(x-1)\)

Step 4: Decompose remainder

\(\frac{2x+4}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}\)

x = -2: 2(-2)+4 = A(-3) โ†’ 0 = -3A โ†’ A = 0

x = 1: 2(1)+4 = B(3) โ†’ 6 = 3B โ†’ B = 2

โœ… Answer: \(x + 1 + \frac{2}{x-1}\)

Paper 2 – Q2. Find the partial fraction decomposition of \(\frac{x^2-3x+2}{x(x-1)(x-2)}\).

[5 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Set up partial fractions

\(\frac{x^2-3x+2}{x(x-1)(x-2)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2}\)

Step 2: Clear denominators

\(x^2-3x+2 = A(x-1)(x-2) + Bx(x-2) + Cx(x-1)\)

Step 3: Find coefficients using cover-up method

x = 0: 0-0+2 = A(-1)(-2) โ†’ 2 = 2A โ†’ A = 1

x = 1: 1-3+2 = B(1)(-1) โ†’ 0 = -B โ†’ B = 0

x = 2: 4-6+2 = C(2)(1) โ†’ 0 = 2C โ†’ C = 0

โœ… Answer: \(\frac{1}{x}\)

Paper 2 – Q3. Express \(\frac{3x^2+x+4}{(x+1)^2(x-2)}\) in partial fractions.

[7 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Set up with repeated factor

\(\frac{3x^2+x+4}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}\)

Step 2: Clear denominators

\(3x^2+x+4 = A(x+1)(x-2) + B(x-2) + C(x+1)^2\)

Step 3: Find coefficients using substitution

x = -1: 3(-1)ยฒ+(-1)+4 = B(-3) โ†’ 6 = -3B โ†’ B = -2

x = 2: 3(4)+2+4 = C(9) โ†’ 18 = 9C โ†’ C = 2

Step 4: Find A using coefficient comparison

Expanding and equating xยฒ coefficient: 3 = A + C = A + 2 โ†’ A = 1

โœ… Answer: \(\frac{1}{x+1} + \frac{-2}{(x+1)^2} + \frac{2}{x-2}\)

Paper 2 – Q4. A rational function has the form \(\frac{ax+b}{(x-1)(x+2)}\). If the partial fraction decomposition is \(\frac{2}{x-1} + \frac{3}{x+2}\), find the values of a and b.

[4 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Combine the given partial fractions

\(\frac{2}{x-1} + \frac{3}{x+2} = \frac{2(x+2) + 3(x-1)}{(x-1)(x+2)}\)

Step 2: Expand the numerator

Numerator = 2(x+2) + 3(x-1) = 2x+4+3x-3 = 5x+1

Step 3: Compare with given form

\(\frac{ax+b}{(x-1)(x+2)} = \frac{5x+1}{(x-1)(x+2)}\)

Step 4: Identify coefficients

Comparing ax+b = 5x+1: a = 5, b = 1

โœ… Answer: a = 5, b = 1

Paper 2 – Q5. Find the partial fraction decomposition of \(\frac{2x^3-x^2+3x-1}{(x^2+1)^2}\).

[8 marks]

๐Ÿ“– Show Answer

Solution:

Step 1: Check if proper fraction

Degree of numerator (3) < degree of denominator (4), so proper

Step 2: Set up for repeated quadratic factor

\(\frac{2x^3-x^2+3x-1}{(x^2+1)^2} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}\)

Step 3: Clear denominators

\(2x^3-x^2+3x-1 = (Ax+B)(x^2+1) + (Cx+D)\)

Step 4: Expand and equate coefficients

\(2x^3-x^2+3x-1 = Ax^3+Ax+Bx^2+B+Cx+D\)

xยณ: 2 = A

xยฒ: -1 = B

xยน: 3 = A + C = 2 + C โ†’ C = 1

xโฐ: -1 = B + D = -1 + D โ†’ D = 0

โœ… Answer: \(\frac{2x-1}{x^2+1} + \frac{x}{(x^2+1)^2}\)