PARTIAL FRACTIONS
This question bank contains 11 questions covering partial fraction decomposition techniques, including linear factors, repeated factors, and quadratic factors, distributed across different paper types according to IB AAHL curriculum standards.
๐ Multiple Choice Questions (2 Questions)
MCQ 1. The partial fraction decomposition of \(\frac{3x+2}{(x-1)(x+3)}\) is:
A) \(\frac{5/4}{x-1} + \frac{7/4}{x+3}\) B) \(\frac{7/4}{x-1} + \frac{5/4}{x+3}\) C) \(\frac{5/4}{x-1} – \frac{7/4}{x+3}\) D) \(\frac{-1/4}{x-1} + \frac{11/4}{x+3}\)
๐ Show Answer
Solution:
Set up: \(\frac{3x+2}{(x-1)(x+3)} = \frac{A}{x-1} + \frac{B}{x+3}\)
Clear denominators: \(3x+2 = A(x+3) + B(x-1)\)
x = 1: 3(1)+2 = A(4) โ 5 = 4A โ A = 5/4
x = -3: 3(-3)+2 = B(-4) โ -7 = -4B โ B = 7/4
โ Answer: A) \(\frac{5/4}{x-1} + \frac{7/4}{x+3}\)
MCQ 2. Which setup is correct for \(\frac{2x^2+x+1}{x(x-1)^2}\)?
A) \(\frac{A}{x} + \frac{B}{(x-1)^2}\) B) \(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\) C) \(\frac{Ax+B}{x(x-1)^2}\) D) \(\frac{A}{x} + \frac{Bx+C}{(x-1)^2}\)
๐ Show Answer
Solution:
For simple linear factor x, we need \(\frac{A}{x}\)
For repeated linear factor (x-1)ยฒ, we need both \(\frac{B}{x-1}\) and \(\frac{C}{(x-1)^2}\)
Complete setup: \(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\)
โ Answer: B) \(\frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}\)
๐ Paper 1 Questions (No Calculator) – 4 Questions
Paper 1 – Q1. Express \(\frac{5x-7}{x^2-x-2}\) in partial fractions.
[5 marks]
๐ Show Answer
Solution:
Step 1: Factor the denominator
\(x^2-x-2 = (x-2)(x+1)\)
Step 2: Set up partial fractions
\(\frac{5x-7}{(x-2)(x+1)} = \frac{A}{x-2} + \frac{B}{x+1}\)
Step 3: Clear denominators
\(5x-7 = A(x+1) + B(x-2)\)
Step 4: Find coefficients using cover-up method
x = 2: 5(2)-7 = A(3) โ 3 = 3A โ A = 1
x = -1: 5(-1)-7 = B(-3) โ -12 = -3B โ B = 4
โ Answer: \(\frac{1}{x-2} + \frac{4}{x+1}\)
Paper 1 – Q2. Find the partial fraction decomposition of \(\frac{3x+5}{(x+1)^2}\).
[4 marks]
๐ Show Answer
Solution:
Step 1: Set up for repeated factor
\(\frac{3x+5}{(x+1)^2} = \frac{A}{x+1} + \frac{B}{(x+1)^2}\)
Step 2: Clear denominators
\(3x+5 = A(x+1) + B\)
Step 3: Find B using substitution
x = -1: 3(-1)+5 = B โ B = 2
Step 4: Find A by equating coefficients
\(3x+5 = Ax+A+B = Ax+A+2\)
Coefficient of x: 3 = A
โ Answer: \(\frac{3}{x+1} + \frac{2}{(x+1)^2}\)
Paper 1 – Q3. Express \(\frac{x+1}{x^2+1}\) in partial fractions.
[3 marks]
๐ Show Answer
Solution:
Step 1: Check if xยฒ+1 is irreducible
Discriminant: bยฒ-4ac = 0ยฒ-4(1)(1) = -4 < 0, so irreducible
Step 2: Since xยฒ+1 cannot be factored further
The expression \(\frac{x+1}{x^2+1}\) is already in its simplest partial fraction form
Alternative representation:
\(\frac{x+1}{x^2+1} = \frac{x}{x^2+1} + \frac{1}{x^2+1}\)
โ Answer: \(\frac{x+1}{x^2+1}\) (already in simplest form)
Paper 1 – Q4. Decompose \(\frac{2x^2+3x+1}{(x+1)(x^2+1)}\) into partial fractions.
[6 marks]
๐ Show Answer
Solution:
Step 1: Set up partial fractions
\(\frac{2x^2+3x+1}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+1}\)
Step 2: Clear denominators
\(2x^2+3x+1 = A(x^2+1) + (Bx+C)(x+1)\)
Step 3: Find A using substitution
x = -1: 2(-1)ยฒ+3(-1)+1 = A(2) โ 0 = 2A โ A = 0
Step 4: Simplify and find B, C
\(2x^2+3x+1 = (Bx+C)(x+1) = Bx^2+Bx+Cx+C\)
Coefficient of xยฒ: 2 = B
Coefficient of x: 3 = B + C = 2 + C โ C = 1
โ Answer: \(\frac{2x+1}{x^2+1}\)
๐ Paper 2 Questions (Calculator Allowed) – 5 Questions
Paper 2 – Q1. Express \(\frac{x^3+2x^2+3x+2}{x^2+x-2}\) in partial fractions.
[6 marks]
๐ Show Answer
Solution:
Step 1: Check if proper fraction
Degree of numerator (3) > degree of denominator (2), so improper
Step 2: Perform polynomial long division
\(\frac{x^3+2x^2+3x+2}{x^2+x-2} = x + 1 + \frac{2x+4}{x^2+x-2}\)
Step 3: Factor denominator of remainder
\(x^2+x-2 = (x+2)(x-1)\)
Step 4: Decompose remainder
\(\frac{2x+4}{(x+2)(x-1)} = \frac{A}{x+2} + \frac{B}{x-1}\)
x = -2: 2(-2)+4 = A(-3) โ 0 = -3A โ A = 0
x = 1: 2(1)+4 = B(3) โ 6 = 3B โ B = 2
โ Answer: \(x + 1 + \frac{2}{x-1}\)
Paper 2 – Q2. Find the partial fraction decomposition of \(\frac{x^2-3x+2}{x(x-1)(x-2)}\).
[5 marks]
๐ Show Answer
Solution:
Step 1: Set up partial fractions
\(\frac{x^2-3x+2}{x(x-1)(x-2)} = \frac{A}{x} + \frac{B}{x-1} + \frac{C}{x-2}\)
Step 2: Clear denominators
\(x^2-3x+2 = A(x-1)(x-2) + Bx(x-2) + Cx(x-1)\)
Step 3: Find coefficients using cover-up method
x = 0: 0-0+2 = A(-1)(-2) โ 2 = 2A โ A = 1
x = 1: 1-3+2 = B(1)(-1) โ 0 = -B โ B = 0
x = 2: 4-6+2 = C(2)(1) โ 0 = 2C โ C = 0
โ Answer: \(\frac{1}{x}\)
Paper 2 – Q3. Express \(\frac{3x^2+x+4}{(x+1)^2(x-2)}\) in partial fractions.
[7 marks]
๐ Show Answer
Solution:
Step 1: Set up with repeated factor
\(\frac{3x^2+x+4}{(x+1)^2(x-2)} = \frac{A}{x+1} + \frac{B}{(x+1)^2} + \frac{C}{x-2}\)
Step 2: Clear denominators
\(3x^2+x+4 = A(x+1)(x-2) + B(x-2) + C(x+1)^2\)
Step 3: Find coefficients using substitution
x = -1: 3(-1)ยฒ+(-1)+4 = B(-3) โ 6 = -3B โ B = -2
x = 2: 3(4)+2+4 = C(9) โ 18 = 9C โ C = 2
Step 4: Find A using coefficient comparison
Expanding and equating xยฒ coefficient: 3 = A + C = A + 2 โ A = 1
โ Answer: \(\frac{1}{x+1} + \frac{-2}{(x+1)^2} + \frac{2}{x-2}\)
Paper 2 – Q4. A rational function has the form \(\frac{ax+b}{(x-1)(x+2)}\). If the partial fraction decomposition is \(\frac{2}{x-1} + \frac{3}{x+2}\), find the values of a and b.
[4 marks]
๐ Show Answer
Solution:
Step 1: Combine the given partial fractions
\(\frac{2}{x-1} + \frac{3}{x+2} = \frac{2(x+2) + 3(x-1)}{(x-1)(x+2)}\)
Step 2: Expand the numerator
Numerator = 2(x+2) + 3(x-1) = 2x+4+3x-3 = 5x+1
Step 3: Compare with given form
\(\frac{ax+b}{(x-1)(x+2)} = \frac{5x+1}{(x-1)(x+2)}\)
Step 4: Identify coefficients
Comparing ax+b = 5x+1: a = 5, b = 1
โ Answer: a = 5, b = 1
Paper 2 – Q5. Find the partial fraction decomposition of \(\frac{2x^3-x^2+3x-1}{(x^2+1)^2}\).
[8 marks]
๐ Show Answer
Solution:
Step 1: Check if proper fraction
Degree of numerator (3) < degree of denominator (4), so proper
Step 2: Set up for repeated quadratic factor
\(\frac{2x^3-x^2+3x-1}{(x^2+1)^2} = \frac{Ax+B}{x^2+1} + \frac{Cx+D}{(x^2+1)^2}\)
Step 3: Clear denominators
\(2x^3-x^2+3x-1 = (Ax+B)(x^2+1) + (Cx+D)\)
Step 4: Expand and equate coefficients
\(2x^3-x^2+3x-1 = Ax^3+Ax+Bx^2+B+Cx+D\)
xยณ: 2 = A
xยฒ: -1 = B
xยน: 3 = A + C = 2 + C โ C = 1
xโฐ: -1 = B + D = -1 + D โ D = 0
โ Answer: \(\frac{2x-1}{x^2+1} + \frac{x}{(x^2+1)^2}\)